Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1357472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650699

RESUMO

Quantitative assessment of tree responses to the local environment can help provide scientific guidance for planted forest management. However, research on the climate-growth relationship of Korshinsk peashrub (Caragana korshinskii Kom.) under different land preparation and post-management (irrigation) conditions is still insufficient. In this study, we collected 223 tree-ring samples from Korshinsk peashrubs using dendroecological methods and systematically quantified the relationships between shrub growth and climatic factors under different management practices in the western Loess Plateau of China. Our findings demonstrated that drought stress caused by scarce precipitation from April to August was the primary factor limiting the growth of Korshinsk peashrubs in the northern and southern mountains of Lanzhou. The "climwin" climate model results showed a weak correlation between natural Korshinsk peashrub growth and drought stress, whereas planted Korshinsk peashrub under rain-fed conditions in the southern mountain was significantly (p<0.05) limited by drought stress from April to August. Moreover, planted Korshinsk peashrub growth under irrigated conditions in the northern mountain was limited only by drought stress in January. Drought model explained 28.9%, 38.3%, and 9.80% of the radial growth variation in Xiguoyuan (XGY), Shuibaozhan (SBZ), and Zhichagou (ZCG) sites, respectively. Artificial supplementary irrigation alleviated the limitation of drought on planted forest growth, which may be implemented for Korshinsk peashrubs planted on sunny slopes, while planted Korshinsk peashrubs under natural rain-fed conditions can be planted on shady slopes through rainwater harvesting and conservation measures such as horizontal ditches and planting holes.

2.
BMC Plant Biol ; 23(1): 628, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062393

RESUMO

The effect of salt damage on plants is mainly caused by the toxic effect of Na+. Studies showed that the secretory carrier membrane proteins were associated with the Na+ transport. However, the salt tolerance mechanism of secretory carrier protein (SCAMP) in soybean was yet to be defined. In this study, ten potential SCAMP genes distributed in seven soybean chromosomes were identified in the soybean genome. The phylogenetic tree of SCAMP domain sequences of several plants can divide SCAMPs into two groups. Most GmSCAMPs genes contained multiple Box4, MYB and MYC cis-elements indicated they may respond to abiotic stresses. We found that GmSCAMP1, GmSCAMP2 and GmSCAMP4 expressed in several tissues and GmSCAMP5 was significantly induced by salt stress. GmSCAMP5 showed the same expression patterns under NaCl treatment in salt-tolerant and salt-sensitive soybean varieties, but the induced time of GmSCAMP5 in salt-tolerant variety was earlier than that of salt-sensitive variety. To further study the effect of GmSCAMP5 on the salt tolerance of soybean plants, compared to GmSCAMP5-RNAi and EV-Control plants, GmSCAMP5-OE had less wilted leave and higher SPAD value. Compared to empty vector control, less trypan blue staining was observed in GmSCAMP5-OE leaves while more staining in GmSCAMP5-RNAi leaves. The Na+ of GmSCAMP5-RNAi plants leaves under NaCl stress were significantly higher than that in EV-Control plants, while significantly lower Na+ in GmSCAMP5-OE plants than in that EV-Control plants. The contents of leaves K+ of GmSCAMP5-RNAi, EV-Control, and GmSCAMP5-OE plants under NaCl stress were opposite to that of leaves Na+ content. Finally, salt stress-related genes NHX1, CLC1, TIP1, SOD1, and SOS1 in transformed hairy root changed significantly compared with the empty control. The research will provide novel information for study the molecular regulation mechanism of soybean salt tolerance.


Assuntos
Glycine max , Tolerância ao Sal , Tolerância ao Sal/genética , Glycine max/genética , Filogenia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...